On souhaite vérifier le pourcentage massique de nitrate d’ammonium \( NH_{4}NO_{3} \) d’un engrais
commercial.
Pour cela on dissout une masse \( m = 1\mbox{,}25 g \) d’engrais dans de l’eau distillée pour obtenir
\( V = 150 mL \) de solution. On prélève un volume \( V_A = 30 mL \) de cette solution.
On ajoute à cela un volume de \( 100 mL \) d’eau distillée avant de procéder au titrage de la
solution obtenue par une solution d’hydroxyde de sodium \( (Na^{+}_{(aq)},HO^{-}_{(aq)}) \) de concentration
\( C = 2\mbox{,}00 \times 10^{-1}\:\text{mol}\mathord{\cdot}\text{L}^{-1} \).
On obtient la courbe de titrage suivante :
{"init": {"range": [[-1.1, 26.1], [11.8, 20.700000000000003]], "scale": [22, 40], "hasGraph": true, "xLabel": "\\( V (mL) \\)", "yLabel": "\\( \\sigma ( \\times 10^{-5} S \\cdot m^{-1} ) \\)", "num_points": null, "labelStep": [1, 1], "tickStep": [4, 2], "gridOpacity": 0.1, "gridStep": [1, 1], "axisOpacity": 0.5, "unityLabels": true, "axisArrows": "->", "settings": {"scale": [22, 40]}, "x_max": 25, "x_min": 0, "y_min": 11.8, "y_max": 19.6, "yLabelPos": [6.5, null]}, "line": [[[-0.1, 14.9], [0.1, 15.1], {"subtype": "segment", "stroke": "#6495ED"}], [[0.9, 14.85], [1.1, 15.049999999999999], {"subtype": "segment", "stroke": "#6495ED"}], [[1.9, 14.8], [2.1, 15.0], {"subtype": "segment", "stroke": "#6495ED"}], [[2.9, 14.75], [3.1, 14.95], {"subtype": "segment", "stroke": "#6495ED"}], [[3.9, 14.700000000000001], [4.1, 14.9], {"subtype": "segment", "stroke": "#6495ED"}], [[4.9, 14.65], [5.1, 14.85], {"subtype": "segment", "stroke": "#6495ED"}], [[5.9, 14.6], [6.1, 14.799999999999999], {"subtype": "segment", "stroke": "#6495ED"}], [[6.9, 14.55], [7.1, 14.75], {"subtype": "segment", "stroke": "#6495ED"}], [[7.9, 14.5], [8.1, 14.7], {"subtype": "segment", "stroke": "#6495ED"}], [[8.9, 14.450000000000001], [9.1, 14.65], {"subtype": "segment", "stroke": "#6495ED"}], [[9.9, 14.4], [10.1, 14.6], {"subtype": "segment", "stroke": "#6495ED"}], [[10.9, 14.35], [11.1, 14.549999999999999], {"subtype": "segment", "stroke": "#6495ED"}], [[11.9, 14.3], [12.1, 14.5], {"subtype": "segment", "stroke": "#6495ED"}], [[12.9, 14.700000000000001], [13.1, 14.9], {"subtype": "segment", "stroke": "#6495ED"}], [[13.9, 15.1], [14.1, 15.299999999999999], {"subtype": "segment", "stroke": "#6495ED"}], [[14.9, 15.5], [15.1, 15.7], {"subtype": "segment", "stroke": "#6495ED"}], [[15.9, 15.9], [16.1, 16.1], {"subtype": "segment", "stroke": "#6495ED"}], [[16.9, 16.299999999999997], [17.1, 16.5], {"subtype": "segment", "stroke": "#6495ED"}], [[17.9, 16.7], [18.1, 16.900000000000002], {"subtype": "segment", "stroke": "#6495ED"}], [[18.9, 17.099999999999998], [19.1, 17.3], {"subtype": "segment", "stroke": "#6495ED"}], [[19.9, 17.5], [20.1, 17.700000000000003], {"subtype": "segment", "stroke": "#6495ED"}], [[20.9, 17.9], [21.1, 18.1], {"subtype": "segment", "stroke": "#6495ED"}], [[21.9, 18.299999999999997], [22.1, 18.5], {"subtype": "segment", "stroke": "#6495ED"}], [[22.9, 18.7], [23.1, 18.900000000000002], {"subtype": "segment", "stroke": "#6495ED"}], [[23.9, 19.1], [24.1, 19.300000000000004], {"subtype": "segment", "stroke": "#6495ED"}], [[24.9, 19.5], [25.1, 19.700000000000003], {"subtype": "segment", "stroke": "#6495ED"}], [[-0.1, 15.1], [0.1, 14.9], {"subtype": "segment", "stroke": "#6495ED"}], [[0.9, 15.049999999999999], [1.1, 14.85], {"subtype": "segment", "stroke": "#6495ED"}], [[1.9, 15.0], [2.1, 14.8], {"subtype": "segment", "stroke": "#6495ED"}], [[2.9, 14.95], [3.1, 14.75], {"subtype": "segment", "stroke": "#6495ED"}], [[3.9, 14.9], [4.1, 14.700000000000001], {"subtype": "segment", "stroke": "#6495ED"}], [[4.9, 14.85], [5.1, 14.65], {"subtype": "segment", "stroke": "#6495ED"}], [[5.9, 14.799999999999999], [6.1, 14.6], {"subtype": "segment", "stroke": "#6495ED"}], [[6.9, 14.75], [7.1, 14.55], {"subtype": "segment", "stroke": "#6495ED"}], [[7.9, 14.7], [8.1, 14.5], {"subtype": "segment", "stroke": "#6495ED"}], [[8.9, 14.65], [9.1, 14.450000000000001], {"subtype": "segment", "stroke": "#6495ED"}], [[9.9, 14.6], [10.1, 14.4], {"subtype": "segment", "stroke": "#6495ED"}], [[10.9, 14.549999999999999], [11.1, 14.35], {"subtype": "segment", "stroke": "#6495ED"}], [[11.9, 14.5], [12.1, 14.3], {"subtype": "segment", "stroke": "#6495ED"}], [[12.9, 14.9], [13.1, 14.700000000000001], {"subtype": "segment", "stroke": "#6495ED"}], [[13.9, 15.299999999999999], [14.1, 15.1], {"subtype": "segment", "stroke": "#6495ED"}], [[14.9, 15.7], [15.1, 15.5], {"subtype": "segment", "stroke": "#6495ED"}], [[15.9, 16.1], [16.1, 15.9], {"subtype": "segment", "stroke": "#6495ED"}], [[16.9, 16.5], [17.1, 16.299999999999997], {"subtype": "segment", "stroke": "#6495ED"}], [[17.9, 16.900000000000002], [18.1, 16.7], {"subtype": "segment", "stroke": "#6495ED"}], [[18.9, 17.3], [19.1, 17.099999999999998], {"subtype": "segment", "stroke": "#6495ED"}], [[19.9, 17.700000000000003], [20.1, 17.5], {"subtype": "segment", "stroke": "#6495ED"}], [[20.9, 18.1], [21.1, 17.9], {"subtype": "segment", "stroke": "#6495ED"}], [[21.9, 18.5], [22.1, 18.299999999999997], {"subtype": "segment", "stroke": "#6495ED"}], [[22.9, 18.900000000000002], [23.1, 18.7], {"subtype": "segment", "stroke": "#6495ED"}], [[23.9, 19.300000000000004], [24.1, 19.1], {"subtype": "segment", "stroke": "#6495ED"}], [[24.9, 19.700000000000003], [25.1, 19.5], {"subtype": "segment", "stroke": "#6495ED"}]], "plot": []}
Déterminer graphiquement le volume à l'équivalence \( V_{eq} \).
On donnera le résultat avec l'unité qui convient.