On souhaite vérifier le pourcentage massique de nitrate d’ammonium \( NH_{4}NO_{3} \) d’un engrais
commercial.
Pour cela on dissout une masse \( m = 1,65 g \) d’engrais dans de l’eau distillée pour obtenir
\( V = 70 mL \) de solution. On prélève un volume \( V_A = 10 mL \) de cette solution.
On ajoute à cela un volume de \( 100 mL \) d’eau distillée avant de procéder au titrage de la
solution obtenue par une solution d’hydroxyde de sodium \( (Na^{+}_{(aq)},HO^{-}_{(aq)}) \) de concentration
\( C = 2,00 \times 10^{-1} mol\mathord{\cdot}L^{-1} \).
On obtient la courbe de titrage suivante :
{"init": {"range": [[-1.1, 26.1], [15.5, 25.6]], "scale": [22, 40], "hasGraph": true, "xLabel": "\\( V (mL) \\)", "yLabel": "\\( \\sigma ( \\times 10^{-5} S \\cdot m^{-1} ) \\)", "num_points": null, "labelStep": [1, 1], "tickStep": [4, 2], "gridOpacity": 0.1, "gridStep": [1, 1], "axisOpacity": 0.5, "unityLabels": true, "axisArrows": "->", "settings": {"scale": [22, 40]}, "x_max": 25, "x_min": 0, "y_min": 15.5, "y_max": 24.5, "yLabelPos": [6.5, null]}, "line": [[[-0.1, 18.9], [0.1, 19.1], {"subtype": "segment", "stroke": "#6495ED"}], [[0.9, 18.849999999999998], [1.1, 19.05], {"subtype": "segment", "stroke": "#6495ED"}], [[1.9, 18.799999999999997], [2.1, 19.0], {"subtype": "segment", "stroke": "#6495ED"}], [[2.9, 18.75], [3.1, 18.950000000000003], {"subtype": "segment", "stroke": "#6495ED"}], [[3.9, 18.7], [4.1, 18.900000000000002], {"subtype": "segment", "stroke": "#6495ED"}], [[4.9, 18.65], [5.1, 18.85], {"subtype": "segment", "stroke": "#6495ED"}], [[5.9, 18.599999999999998], [6.1, 18.8], {"subtype": "segment", "stroke": "#6495ED"}], [[6.9, 18.549999999999997], [7.1, 18.75], {"subtype": "segment", "stroke": "#6495ED"}], [[7.9, 18.5], [8.1, 18.700000000000003], {"subtype": "segment", "stroke": "#6495ED"}], [[8.9, 18.45], [9.1, 18.650000000000002], {"subtype": "segment", "stroke": "#6495ED"}], [[9.9, 18.4], [10.1, 18.6], {"subtype": "segment", "stroke": "#6495ED"}], [[10.9, 18.799999999999997], [11.1, 19.0], {"subtype": "segment", "stroke": "#6495ED"}], [[11.9, 19.2], [12.1, 19.400000000000002], {"subtype": "segment", "stroke": "#6495ED"}], [[12.9, 19.599999999999998], [13.1, 19.8], {"subtype": "segment", "stroke": "#6495ED"}], [[13.9, 20.0], [14.1, 20.200000000000003], {"subtype": "segment", "stroke": "#6495ED"}], [[14.9, 20.4], [15.1, 20.6], {"subtype": "segment", "stroke": "#6495ED"}], [[15.9, 20.799999999999997], [16.1, 21.0], {"subtype": "segment", "stroke": "#6495ED"}], [[16.9, 21.2], [17.1, 21.400000000000002], {"subtype": "segment", "stroke": "#6495ED"}], [[17.9, 21.599999999999998], [18.1, 21.8], {"subtype": "segment", "stroke": "#6495ED"}], [[18.9, 22.0], [19.1, 22.200000000000003], {"subtype": "segment", "stroke": "#6495ED"}], [[19.9, 22.4], [20.1, 22.6], {"subtype": "segment", "stroke": "#6495ED"}], [[20.9, 22.799999999999997], [21.1, 23.0], {"subtype": "segment", "stroke": "#6495ED"}], [[21.9, 23.2], [22.1, 23.400000000000002], {"subtype": "segment", "stroke": "#6495ED"}], [[22.9, 23.6], [23.1, 23.800000000000004], {"subtype": "segment", "stroke": "#6495ED"}], [[23.9, 24.0], [24.1, 24.200000000000003], {"subtype": "segment", "stroke": "#6495ED"}], [[24.9, 24.4], [25.1, 24.6], {"subtype": "segment", "stroke": "#6495ED"}], [[-0.1, 19.1], [0.1, 18.9], {"subtype": "segment", "stroke": "#6495ED"}], [[0.9, 19.05], [1.1, 18.849999999999998], {"subtype": "segment", "stroke": "#6495ED"}], [[1.9, 19.0], [2.1, 18.799999999999997], {"subtype": "segment", "stroke": "#6495ED"}], [[2.9, 18.950000000000003], [3.1, 18.75], {"subtype": "segment", "stroke": "#6495ED"}], [[3.9, 18.900000000000002], [4.1, 18.7], {"subtype": "segment", "stroke": "#6495ED"}], [[4.9, 18.85], [5.1, 18.65], {"subtype": "segment", "stroke": "#6495ED"}], [[5.9, 18.8], [6.1, 18.599999999999998], {"subtype": "segment", "stroke": "#6495ED"}], [[6.9, 18.75], [7.1, 18.549999999999997], {"subtype": "segment", "stroke": "#6495ED"}], [[7.9, 18.700000000000003], [8.1, 18.5], {"subtype": "segment", "stroke": "#6495ED"}], [[8.9, 18.650000000000002], [9.1, 18.45], {"subtype": "segment", "stroke": "#6495ED"}], [[9.9, 18.6], [10.1, 18.4], {"subtype": "segment", "stroke": "#6495ED"}], [[10.9, 19.0], [11.1, 18.799999999999997], {"subtype": "segment", "stroke": "#6495ED"}], [[11.9, 19.400000000000002], [12.1, 19.2], {"subtype": "segment", "stroke": "#6495ED"}], [[12.9, 19.8], [13.1, 19.599999999999998], {"subtype": "segment", "stroke": "#6495ED"}], [[13.9, 20.200000000000003], [14.1, 20.0], {"subtype": "segment", "stroke": "#6495ED"}], [[14.9, 20.6], [15.1, 20.4], {"subtype": "segment", "stroke": "#6495ED"}], [[15.9, 21.0], [16.1, 20.799999999999997], {"subtype": "segment", "stroke": "#6495ED"}], [[16.9, 21.400000000000002], [17.1, 21.2], {"subtype": "segment", "stroke": "#6495ED"}], [[17.9, 21.8], [18.1, 21.599999999999998], {"subtype": "segment", "stroke": "#6495ED"}], [[18.9, 22.200000000000003], [19.1, 22.0], {"subtype": "segment", "stroke": "#6495ED"}], [[19.9, 22.6], [20.1, 22.4], {"subtype": "segment", "stroke": "#6495ED"}], [[20.9, 23.0], [21.1, 22.799999999999997], {"subtype": "segment", "stroke": "#6495ED"}], [[21.9, 23.400000000000002], [22.1, 23.2], {"subtype": "segment", "stroke": "#6495ED"}], [[22.9, 23.800000000000004], [23.1, 23.6], {"subtype": "segment", "stroke": "#6495ED"}], [[23.9, 24.200000000000003], [24.1, 24.0], {"subtype": "segment", "stroke": "#6495ED"}], [[24.9, 24.6], [25.1, 24.4], {"subtype": "segment", "stroke": "#6495ED"}]], "plot": []}
Déterminer graphiquement le volume à l'équivalence \( V_{eq} \).
On donnera le résultat avec l'unité qui convient.